Cytoplasmic and Nuclear TAZ Exert Distinct Functions in Regulating Primed Pluripotency

نویسندگان

  • Xingliang Zhou
  • Jean Paul Chadarevian
  • Bryan Ruiz
  • Qi-Long Ying
چکیده

Mouse epiblast stem cells (mEpiSCs) and human embryonic stem cells (hESCs) are primed pluripotent stem cells whose self-renewal can be maintained through cytoplasmic stabilization and retention of β-catenin. The underlying mechanism, however, remains largely unknown. Here, we show that cytoplasmic β-catenin interacts with and retains TAZ, a Hippo pathway effector, in the cytoplasm. Cytoplasmic retention of TAZ promotes mEpiSC self-renewal in the absence of nuclear β-catenin, whereas nuclear translocation of TAZ induces mEpiSC differentiation. TAZ is dispensable for naive mouse embryonic stem cell (mESC) self-renewal but required for the proper conversion of mESCs to mEpiSCs. The self-renewal of hESCs, like that of mEpiSCs, can also be maintained through the cytoplasmic retention of β-catenin and TAZ. Our study indicates that how TAZ regulates cell fate depends on not only the cell type but also its subcellular localization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erk5 Is a Key Regulator of Naive-Primed Transition and Embryonic Stem Cell Identity

Embryonic stem cells (ESCs) can self-renew or differentiate into any cell type, a phenomenon known as pluripotency. Distinct pluripotent states, termed naive and primed pluripotency, have been described. However, the mechanisms that control naive-primed pluripotent transition are poorly understood. Here, we perform a targeted screen for kinase inhibitors, which modulate the naive-primed pluripo...

متن کامل

Upstream regulators of the Hippo pathway

The mammalian Hippo pathway plays pivotal roles in regulating organ size, stem cell pluripotency and tumorigenesis. In this pathway, the kinase Lats1/2, in complex with their regulatory subunit Mob, inhibit YAP and TAZ by a direct phosphorylation. YAP and TAZ are two main downstream effectors of the Hippo pathway, and they function as transcription co-activators to promote cell proliferation an...

متن کامل

LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency.

The RNA-binding proteins LIN28A and LIN28B play critical roles in embryonic development, tumorigenesis, and pluripotency, but their exact functions are poorly understood. Here, we show that, like LIN28A, LIN28B can function effectively with NANOG, OCT4, and SOX2 in reprogramming to pluripotency and that reactivation of both endogenous LIN28A and LIN28B loci are required for maximal reprogrammin...

متن کامل

PP1 cooperates with ASPP2 to dephosphorylate and activate TAZ.

The Hippo pathway regulates organ size by controlling both cell proliferation and apoptosis. TAZ functions as a transcriptional co-activator downstream of the Hippo pathway and has been implicated in human cancer development. A key step in the Hippo-TAZ pathway is phosphorylation of TAZ by LATS kinase, which leads to TAZ inhibition by both cytoplasmic retention and degradation. However, the mec...

متن کامل

TIAM1 Antagonizes TAZ/YAP Both in the Destruction Complex in the Cytoplasm and in the Nucleus to Inhibit Invasion of Intestinal Epithelial Cells

Aberrant WNT signaling drives colorectal cancer (CRC). Here, we identify TIAM1 as a critical antagonist of CRC progression through inhibiting TAZ and YAP, effectors of WNT signaling. We demonstrate that TIAM1 shuttles between the cytoplasm and nucleus antagonizing TAZ/YAP by distinct mechanisms in the two compartments. In the cytoplasm, TIAM1 localizes to the destruction complex and promotes TA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017